Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations

نویسندگان

  • Scott A. Detmer
  • David C. Chan
چکیده

Mfn2, an oligomeric mitochondrial protein important for mitochondrial fusion, is mutated in Charcot-Marie-Tooth disease (CMT) type 2A, a peripheral neuropathy characterized by axonal degeneration. In addition to homooligomeric complexes, Mfn2 also associates with Mfn1, but the functional significance of such heterooligomeric complexes is unknown. Also unknown is why Mfn2 mutations in CMT2A lead to cell type-specific defects given the widespread expression of Mfn2. In this study, we show that homooligomeric complexes formed by many Mfn2 disease mutants are nonfunctional for mitochondrial fusion. However, wild-type Mfn1 complements mutant Mfn2 through the formation of heterooligomeric complexes, including complexes that form in trans between mitochondria. Wild-type Mfn2 cannot complement the disease alleles. Our results highlight the functional importance of Mfn1-Mfn2 heterooligomeric complexes and the close interplay between the two mitofusins in the control of mitochondrial fusion. Furthermore, they suggest that tissues with low Mfn1 expression are vulnerable in CMT2A and that methods to increase Mfn1 expression in the peripheral nervous system would benefit CMT2A patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Novel Phospholipid Related Functions of Mitofusin 2 in Cell Models of Charcot-Marie-Tooth Disease 2A

[Leave a gap between header] [Right align] Abstract of a dissertation at the University of Miami. The mitofusin 1 and 2 (MFN and MFN2) proteins reside in the outer mitochondrial membrane and have been shown to regulate mitochondrial network architecture by mediating tethering and fusion of mitochondria. Mitochondria normally form a tubular and branched reticular network dynamically regulated by...

متن کامل

A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover.

Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by mutations in the gene MFN2 and is one of the most common inherited peripheral neuropathies. Mfn2 is one of two mammalian mitofusin GTPases that promote mitochondrial fusion and maintain organelle integrity. It is not known how mitofusin mutations cause axonal degeneration and CMT2A disease. We used the conserved yeast mitofusin FZO1 to st...

متن کامل

Mitofusin 2 expression dominates over mitofusin 1 exclusively in mouse dorsal root ganglia - a possible explanation for peripheral nervous system involvement in Charcot-Marie-Tooth 2A.

Mitofusin 2 (Mfn2), a protein of the mitochondrial outer membrane, is essential for mitochondrial fusion and contributes to the maintenance and operation of the mitochondrial network. Mutations in the mitofusin 2 gene cause axonal Charcot-Marie-Tooth type 2A (CMT2A), an inherited disease affecting peripheral nerve axons. The precise mechanism by which mutations in MFN2 selectively cause the deg...

متن کامل

Mitofusin deficiency affects energy metabolism, mitochondrial biogenesis and mtDNA content in MEF cells

Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in its rearrangement, was first described in pathology of hypertension and diabetes, but nowadays much attention is paid to its functions in Charcot-MarieTooth type 2A neuromyopathy (CMT2A). Here, effects of Mfn2 deficiency on cell metabolism in the presence or absence of Mfn1 were investigated. Experiments were performe...

متن کامل

Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation.

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochondrial outer membrane protein that promotes mitochondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2007